CloudPortal Client API

The CloudPortal Client gets all of its data from asynchronous (AJAX) calls over HTTP through a REST interface to the CloudPortal Server. The
data returned will always be JSON-formatted documents. This page describes that API. Note: The goal of the API is convenience for the client,

and this goal takes priority over any pedantic approach to REST-purity.

'a This Specification will Change!
The documentation on this page is initial thoughts and ideas and not a complete specification. We will change this over the next

few sprints and update this page accordingly.

REST CRUD Operations

REST is great at CRUD, since REST implies resources, and operations on resources are CRUD. We are planning on using the Express-resource

middleware to Node.js to do the dirty work. For a given resources, xyz, the following calls are supported:

® GET /api/xyz - Returns all instances of the resource. Parameters include:
® max - The total number of results to return. Defaults to 20.
® of f set - The position of the first result to return after sorting has taken place
® sort - The name of the field to sort the results by, as in "name" or "title"
® order - Can either be "asc" (ascending) or "desc" (descending)
® POST /api/xyz - Creates a new instance. The body of the post contains a JSON formatted object containing the values.
® CET /api/xyz/ | D- Returns a single instance based on the value of the | D parameter. While this is normally a small number, don't
expect IDs to be in anything less than a long.
® PUT /api/xyz/ | D- Changes some values for an instance referenced by | D. The body contains changed values, and attributes not
specified, will not be changed.

® DELETE /api/xyz/ | D- Deletes an instance referenced by | D.

Typical Behavior

The following are typical behaviors that each REST operation request adheres.

POST Body

When giving a POST (or PUT) to create a new instance, keep in mind that the bulk of the body is assigned to a dat a key field. For instance, to

create a new syst em ser vi ce, you would specify the body like:

{
"data": {
"nane": "blingbling",
"description": "Bling Bling Container",
"srvversion": "1.0"
}

http://wiki.ebento.net/display/IBG/CloudPortal+Client+Design
http://wiki.ebento.net/display/IBG/REST
http://wiki.ebento.net/display/IBG/CloudPortal+Server+Design
http://wiki.ebento.net/display/IBG/JSON
http://wiki.ebento.net/display/IBG/REST
http://wiki.ebento.net/display/IBG/CRUD
http://wiki.ebento.net/display/IBG/Express
http://wiki.ebento.net/display/IBG/Node.js

Note: Do not specify an i d key field, as that will be generated and returned for the POST commands.

Error Messages

Each request will contain a key, success, which is either t r ue if all went well, or f al se if an error occurred.

If the request ended in error, the response will contain details of the situation in a message key field, as in:

"success": fal se,
"message":"Object with id=3 not found"

Multiple Results

If the request returns multiple results (which is typical when issuing a GET request without an specific | D value), the total number of results

returned is assigned to the value of count . For instance, if you ask for all r unt i ne instances, you might get the following result:

"success": true,
"data": [
{
"id": 1,
"nanme": "node"
"description": "Node.js",
"fwersion": "0.4.5",

"id": 2,

"name": "java"
"description": "Java 6",
"fwersion": "1.6",

"id": 3,

"nane": "rubyl8"
"description": "Ruby 1.8.7",
"fwersion": "1.8.7",

“id:o 4,

"name": "rubyl9"
"description": "Ruby 1.9",
"fwersion": "1.9.2p180",

I

"count": 4

REST Resources

This section contains all of the resources that are currently available for clients.

Team

Example: htt p: / /1 ocal host : 8080/ cl oudportal /api/team 1

http://localhost:8080/cloudportal/api/team/1

"success": true,
"data": {
"id'ro1,

"nane": "d oudEco Internal Teant,

"A teamthat contains all

"accounts": [1, 3, 81,

"applications":

[1, 6, 12],

"services": [1, 4]

"description":

of the team nenbers as adnministrators.",

Runtime

Example to get all entries: ht t p: / /| ocal host : 8080/ cl oudportal / api /runti me/

Results:

"success": true,
"data": [
{
“id:o1,

"fwersion":

id: 2,

"fwersion":

“id": 3,

"fwersion":

"id": 4,

"fwersion":

}
I
"count": 4
}
Application

Example to get a specific application with an ID of 1: htt p: / /| ocal host : 8080/ cl oudportal / api / appl i cation/1

"nane": "node"
"description"

: "Node.js",
"0.4.5",

"name": "java"
"description": "Java 6",

"1.6",

"name": "rubyl18"
"description"

: "Ruby 1.8.7",
"1.8.7",

"nanme": "rubyl9"
"description"

: "Ruby 1.9",
"1.9.2p180",

http://localhost:8080/cloudportal/api/runtime/
http://localhost:8080/cloudportal/api/application/1

"success": true,
"data": {

"id": 1,

"nanme": "nongrue",

"description": "A sinple, free-form REST interface to a MongoDB dat abase i nstance.",

"menmory": -1,
"runtinme": 1,
"url": "nongrue"

"instances": 1,
i "teant: 1,

SystemService

A number of available services are available for a given customer, to get a list of all of these, you would issue:

http://1 ocal host: 8080/ cl oudportal /api/system service

Which would return:

o

: "success": true,

"data": [

i {

: “id:o1,

"name": "nongodb",

"description": "MngoDB NoSQ. store",
"srvversion": "1.8"

g b,

; {

: id'o2,

"nane": "nysql",

"description": "MySQ. database service",
"srvversion": "5.1"

i I

i {

: “id': 3,

"name": "postgresqgl",

i "description": "PostgreSQ. database service (vFabric)",
"srvversion": "9.0"

i }

i {

: "id: 4,

"nane": "rabbitny",

: "description": "RabbitMQ messagi ng service",
"srvversion": "2.4"

i }

| {

: “id": 5,

"name": "redis",

: "description": "Redis key-value store service",
"srvversion": "2.2"

i }

NP

: "count": 5

)

ProvisionedService

Once a customer has provisioned a service and made it available to her applications, you could get information about a particular one via:

http://localhost:8080/cloudportal/api/system-service

http://1ocal host: 8080/ cl oudportal /api/servicel/l

Which would return the following:

"success": true, !
"data": {
"idUrod, ;
"name": "nongodb- 800ab", i
"service": 1,
"tean: 1

Accounts

To view information about a particular user account, for instance, with an ID of 1, use:

http://1ocal host: 8080/ cl oudportal /api/account/1

"success": true,

"data": {
“id':o1,
"teanl': 1,
"usernanme": "howard"
"nanme": "Howard Abrans",
"description": "Maker of nudpies",
"account Expi red": fal se,
"account Locked": fal se,
"addresses": [11,
"adm n": true,
"authorities": [117,
"emails": [1],
"enabl ed": true,
"password": "focker",
"passwor dExpi red": fal se,
"phones": [1, 2],
"preferences": null,

Technical Details

The resources exposed through the REST API are described in the domain classes located in
ce-portal -server/grail s-app/ domai n/ conl cl oudeco/ port al . These classes are tagged as being exposed through the REST

interface with the following code:

i class Xyz {
i static expose = 'xyz'
: 11 i

Exposing the domain classes through a REST API is currently being done via a Grails plugin.

Note: Since this plugin is quite automatic, it may not be sufficient for all our needs, and we may end up creating controllers for each class to

expose the data as REST in a way that we can control it better.

http://localhost:8080/cloudportal/api/service/1
http://localhost:8080/cloudportal/api/account/1
http://wiki.ebento.net/display/IBG/Alpha+CloudPortal+Domain+Model
http://grails.org/plugin/json-rest-api

