
CloudPortal Architecture

Architectural Goals

CloudPortal, while a of the CloudEco product, is . As such, it needs to be dynamic and responsive. Thecomponent product the user experience

target audience is both high-level, enterprise developers and their managers who want to view health and status of the deployed applications.

The CloudPortal components will be deployed our CloudEco product system (that's right, we'll "eat our own dog food").into

The CloudPortal is divided into two primary sections, the and a .Client Application Server Portal Component

Architecture Overview

The UML Component Diagram (above) is a very overview of architectural components and interfaces that make up CloudPortal:high level

CloudPortal Client will be written as a dynamic web application using technologies.HTML5

The is a REST API customized to make the Client as simple as possible.ClientAPI

CloudPortal Server answers requests from the Client, and creates new REST calls to the backend Controllers using their exposed API.

CloudBase Controller is the primarily interface the Server talks to for information about a user's applications and services.

The , at first, will be the REST API of 's Cloud Controller. This API will evolve over time to meet our needs.CC_API [CloudFoundry]

http://wiki.ebento.net/display/IBG/CloudPortal
http://wiki.ebento.net/display/IBG/HTML5

The FAD Server is a small server that exposes a REST interface () for controlling and monitoring deployments into our cloud.FAD_API

The is a REST-based API that we will develop for connecting to the CloudPortal.FAD_API

Note: We will have many back-end servers for things like monitoring, health and performance information about the systems in the CloudEco

installation.

Client Application

The CloudPortal Client will be written in using technologies and the library. This requires the to beJavaScript HTML5 jQuery Client Web Browser

a browser capable of AJAX and other dynamic JavaScript features.modern

The client application will be deployed to the browser from the as a series of , including:Web Server static files

HTML Files

CSS Stylesheets

JavaScript files

Images

HTML Templates

Even though in the original component diagram (below) it appears that the client is talking to two different services, the Client will really only

communicate to a single Server, but using two of URLs that refer to static files and dynamic data.types

The following are some example URL routes that should demonstrate this:

Static Files Dynamic Data

/index.html /user

/js/jquery.js /user/528392355

/css/styles.css /user/528392355/application/4294438

Note: The URL request for will redirect to , as this will be the start of the entire client application./ index.html

From the standpoint of the server, all client files are . That is, the server will not spend any processing cycles rendering views. Instead, thestatic

client will download both the data (through the REST API) and a template and process the view on the client. We will use the libraryFuzzyToast

to make this process easier.

Once the client parts have been downloaded and executed, the client application will call back to the with a series of REST requestsWeb Server

http://wiki.ebento.net/display/IBG/JavaScript
http://wiki.ebento.net/display/IBG/HTML5
http://wiki.ebento.net/display/IBG/jQuery
http://wiki.ebento.net/display/IBG/FuzzyToast

over the HTTP protocol. The response will contain JSON-formatted data (this includes error message details).

Server Portal

As shown in the diagram below, the Server components are split into two separate servers:

[CloudPortal Gateway] is the only interface to the client. It answers front-end REST requests by making back-end REST requests.

[CloudPortal Database] is a server that connects to a database and stores data specific to the CloudPortal system.MongoDB

These servers will be written in (the same language as the , but using a different set up technologies:JavaScript Client

Express is a high-level framework that allows us to create the REST API directly as a collection of functions. We will also use the

 extension.express-resource

Connect gives Express its abilities to process Cookies, HTTPS and other mid-level features.

Node.js is a low-level, asynchronous framework for creating web applications on the server. It uses engine.Google's V8

Note: We might want to look at for the Gateway, as this technology maps multiple REST calls to a single REST API. Itsql.io incoming outgoing

database-like syntax is a bit odd, though.SELECT...FROM...WHERE

http://wiki.ebento.net/display/IBG/MongoDB
http://wiki.ebento.net/display/IBG/JavaScript
http://wiki.ebento.net/display/IBG/Express
http://github.com/visionmedia/express-resource
http://wiki.ebento.net/display/IBG/Connect
http://wiki.ebento.net/display/IBG/Node.js
http://code.google.com/p/v8/
http://ql.io/

