
Node.js
Node.js (or just) is a stand-alone engine that executes applications on the server. This technology is quite fast (built withNode JavaScript

Google's), but is quite low-level and somewhat verbose. Typically, you will layer high-level abstractions and frameworks on top of itV8 Engine

(like).Express

Advantages of applications written in Node.js include:

Fast

Scalable

Light-weight and efficient

These advantages are due to its event-driven, non-blocking I/O model. This approach may take a while to get used to, however.

Background

Node.js was created by Ryan Dahl starting in 2009. While quite young, its popularity has grown quickly. Its reliability is due mostly to its underlying

simplicity instead of maturing over many years (see this).Wikipedia entry

nodejs Mailing List is the primary support channel for Node.js questions.

NodeConf is a regular, migrating conference for Node.js developers and interested parties. will be attending one inHoward Abrams

January 2012.

Example Code

The following is a typical example that creates a web server that always says to any HTTP request on port .Hello World 1337

var http = require('http');

http.createServer(function (request, response) {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
}).listen(1337, "127.0.0.1");

console.log('Server running at http://127.0.0.1:1337/');

If you have your Node environment then you can run this program by creating a file that contains the code above. Then issueinstalled example.js

the command:

$ node example.js
Server running at http://127.0.0.1:1337/

Now point your browser at and voila! "Hello World" is displayed in the web page.http://127.0.0.1:1337

Node embraces JavaScript (for better or worse). So everything is handled in a ... er, in typical inner asynchronous nature lambda callback function

. As you can see in the code above, we begin with an object. We then call two methods on that object:event driven fashion http

http://nodejs.org/
http://wiki.ebento.net/display/IBG/JavaScript
http://code.google.com/p/v8/
http://wiki.ebento.net/display/IBG/Express
http://en.wikipedia.org/wiki/Nodejs
http://groups.google.com/group/nodejs
http://www.nodeconf.com/
http://wiki.ebento.net/display/~howard
http://127.0.0.1:1337
http://code.danyork.com/2011/01/25/node-js-doctors-offices-and-fast-food-restaurants-understanding-event-driven-programming/

http.createServer();
http.listen();

While the method takes a couple of scalar parameters, the method takes a function. This function is called eachlisten() createServer()

time a request comes in... . I suggest reading the asynchronously How do you organize your code in order to build something bigger? The

, a free, online book that shows a good approach at structuring a large amount of code.Node Beginner Book

How asynchronous are we talking about here? A lot. For instance, let's suppose you had a filename, and wanted to get the full path to it. This

is a synchronous operation in most languages, like Java. But in Node, it is asynchronous. Keep in mind, the following code is wrong, wrong,

wrong!

var path = "js/somecode.js";
var realpath;

fs.realpath(path, function(err, resolvedPath){
 if (!err) {
 realpath = resolvedPath;
 }
});

console.log(realpath);

Running this code will most likely return . Why? By the time the method is called, the inner function may not have finishednull console.log()

... remember, it is asynchronous. Moving the routine the asynchronous call will work.console.log() inside

How do I execute code sequentially? The short answer is, you don't. Node forces you to use JavaScript more correctly. Stop using global

variables (like the in the example above) and pass everything into functions. In other words, become a .realpath functional programmer

Scared you or interested you?

Installation

To install on Windows or Macs, download and use the . For our , use the followingsupplied installation programs Ubuntu development environment

command:

sudo apt-get install nodejs

Node.js may already be installed

The can be use to install both Node.js and NPM, the Node Package Manager. Before you installCloudPortal Developer Script

these by hand, you may want to download and run that script.

You can't really use Node without installing support libraries. Similar to Ruby's , Node has a (also on) that is used to grabgem NPM Github

accepted libraries and install them locally. Installation is simple:

$ curl http://npmjs.org/install.sh | clean=no sudo bash

At this point, you can install a library simply and entering the following on the command line:looking up the package name

http://www.nodebeginner.org/
http://www.nodebeginner.org/
http://nodejs.org/#download
http://wiki.ebento.net/display/IBG/Developer+Environment+Setup
http://wiki.ebento.net/display/IBG/Portal+Developer+Environment+Setup
http://npmjs.org/
https://github.com/isaacs/npm
http://search.npmjs.org/

$ npm install redis # or mongodb or ... you get the picture

Now, in your JavaScript code, you can simply put a at the top:require

var redis = require("redis");
// ...

CloudPortal

We could possibly use Node as the server component for our . The following section get into some low-level details, however, weCloudPortal

wouldn't use it. Instead we'd use the following modules for a higher-level abstraction:

express for serving up static pages (similar to)Sinatra

mongrue for handling REST calls and storing data

jsdom for making REST calls to by integrating methods). See .CloudBase jQuery these instructions

However, if you want to know some low-level details, proceed!

Serving the Client Code

The Client Code is dynamic only on the user's browser. From the server's point of view, this is static content. Node is quite low-level, and serving

static content is something you would have to code for. We can write it directly, as on this code from the project:mongrue

http://wiki.ebento.net/display/IBG/CloudPortal
http://expressjs.com/
http://wiki.ebento.net/display/IBG/Sinatra
https://github.com/howardabrams/mongrue
https://github.com/tmpvar/jsdom
http://wiki.ebento.net/display/IBG/CloudBase
http://wiki.ebento.net/display/IBG/jQuery
http://blog.nodejitsu.com/jsdom-jquery-in-5-lines-on-nodejs
https://github.com/howardabrams/mongrue/blob/master/test/webserver.js

var type = "text/html";
var extname = path.extname(file);
switch (extname) {
 case '.js':
 type = 'text/javascript';
 break;
 case '.css':
 type = 'text/css';
 break;
}

path.exists(file, function(exists) {
 if (exists) {
 fs.readFile(file, 'utf8', function (err, data) {
 if (err) {
 response.writeHead(500);
 response.end();
 }
 sendFile(response, type, data);
 });
 }
 else {
 response.writeHead(404);
 response.end();
 }
});

/**
 * This function sends some arbitrary HTML gunk.
 */
function sendFile(response, type, data) {
 var body;
 if (data) {
 body = new Buffer(data);
 }
 else {
 body = new Buffer();
 }

 response.writeHead(200, {
 'Content-Length': body.length,
 'Content-Type': type });
 response.end(data);
}

We will not use the above code, for instead of writing our own, we will use the that will handle all that work forExpress module

us.

Serving JSON via REST

JavaScript and JSON were obviously made for each other, so accepting JSON requests through a REST interface is trivial. We'd begin by

incorporating the and extending it to support the REST we expect.mongrue project resources

For instance, the following function can be used to send a collection of entries (based on a request without an ID):GET

http://expressjs.com/guide.html
https://github.com/howardabrams/mongrue

/**
 * This function takes an "object" or "array" and sends the
 * results to the client in a standard way.
 */
function sendItems(response, items) {
 if (items) {
 var body = JSON.stringify(items);
 response.writeHead(200, {
 'Content-Length': body.length,
 'Content-Type': 'application/json' });
 response.end(body);
 }
 else {
 sendError(response, 404, "Nothing to return");
 }
}

Caching changes in a Local Database

If we used the (mentioned above), then it could already store the REST requests in a local database. For instance, themongrue MongoDB

following function could be called when a is referenced:POST

conn.collection('team', function(err, collection) {
 create(response, collection, body);
});

// ...

function create(response, collection, body) {
 var options = {safe:true};
 collection.insert(body, options, function(err, objects) {
 if (err) {
 responses.sendDbError(response, err);
 }
 else {
 responses.sendItem(response, objects);
 }
 collection.db.close();
 });
}

We would probably choose an abstraction layer, for instance, using the project.mongrue

Accessing back-end REST Servers

Making remote API calls, is straight-forward, using the library support already built into Node, ala :http.request

http://wiki.ebento.net/display/IBG/MongoDB
https://github.com/howardabrams/mongrue
http://nodejs.org/docs/v0.4.5/api/http.html#http.request

1.

2.

var options = {
 host: url,
 port: 80,
 path: '/resource?id=foo&bar=baz',
 method: 'POST'
};

http.request(options, function(res) {
 console.log('STATUS: ' + res.statusCode);
 console.log('HEADERS: ' + JSON.stringify(res.headers));
 res.setEncoding('utf8');
 res.on('data', function (chunk) {
 console.log('BODY: ' + chunk);
 });
}).end();

Another tempting option is to use and load the (normally client-side) library, and use its utility functions to grab andjsdom jQuery jQuery.ajax

parse the remote REST calls. That would be very nice.

Debugging Applications

Node applications can be started with an open debug port. Our IDE, Springsource Tool Suite (STS), has a plugin that allows you to connect to this

port and debug your application.

Since STS is based on Eclipse, you can follow these .online instructions

Some other references to debuggers for Node:

node-inspector - https://github.com/dannycoates/node-inspector

ndb - (written in node)https://github.com/smtlaissezfaire/ndb

References

The following are books and articles on Node.js that may be of interest:

Wait, What's Node.js Good for Again?

Why Everyone Is Talking About Node

The Node Beginner's Book is a must read for learning how to structure a Node project. (in)Chinese

https://github.com/tmpvar/jsdom
http://wiki.ebento.net/display/IBG/jQuery
https://github.com/joyent/node/wiki/Using-Eclipse-as-Node-Applications-Debugger
https://github.com/dannycoates/node-inspector
https://github.com/smtlaissezfaire/ndb
http://www.readwriteweb.com/hack/2011/01/wait-whats-nodejs-good-for-aga.php
http://mashable.com/2011/03/10/node-js/
http://www.nodebeginner.org/
http://www.nodebeginner.org/index-zh-cn.html

