
CloudPortal Client API
The gets all of its data from asynchronous (AJAX) calls over HTTP through a interface to the . TheCloudPortal Client REST CloudPortal Server

data returned will always be -formatted documents. This page describes that API. The goal of the API is for the client,JSON Note: convenience

and this goal takes priority over any pedantic approach to REST-purity.

This Specification will Change!

The documentation on this page is and not a complete specification. We will change this over the nextinitial thoughts and ideas

few sprints and update this page accordingly.

REST CRUD Operations

REST is great at , since REST implies , and operations on resources are CRUD. We are planning on using the -resourceCRUD resources Express

middleware to to do the dirty work. For a given resources, , the following calls are supported:Node.js xyz

GET /api/xyz - Returns all instances of the resource. Parameters include:

max - The total number of results to return. Defaults to 20.

offset - The position of the first result to return after sorting has taken place

sort - The name of the field to sort the results by, as in "name" or "title"

order - Can either be "asc" (ascending) or "desc" (descending)

POST /api/xyz - Creates a new instance. The body of the post contains a JSON formatted object containing the values.

GET /api/xyz/ID - Returns a single instance based on the value of the parameter. While this is normally a small number, don'tID

expect IDs to be in anything less than a .long

PUT /api/xyz/ID - Changes values for an instance referenced by . The body contains changed values, and attributes notsome ID

specified, will not be changed.

DELETE /api/xyz/ID - Deletes an instance referenced by .ID

Typical Behavior

The following are typical behaviors that each REST operation request adheres.

POST Body

When giving a (or) to create a new instance, keep in mind that the bulk of the body is assigned to a key field. For instance, toPOST PUT data

create a new , you would specify the body like:system-service

{
 "data": {
 "name": "blingbling",
 "description": "Bling Bling Container",
 "srvversion": "1.0"
 }
}

http://wiki.ebento.net/display/IBG/CloudPortal+Client+Design
http://wiki.ebento.net/display/IBG/REST
http://wiki.ebento.net/display/IBG/CloudPortal+Server+Design
http://wiki.ebento.net/display/IBG/JSON
http://wiki.ebento.net/display/IBG/REST
http://wiki.ebento.net/display/IBG/CRUD
http://wiki.ebento.net/display/IBG/Express
http://wiki.ebento.net/display/IBG/Node.js

Note: Do not specify an key field, as that will be generated and returned for the commands.id POST

Error Messages

Each request will contain a key, , which is either if all went well, or if an error occurred.success true false

If the request ended in error, the response will contain details of the situation in a key field, as in:message

{
 "success":false,
 "message":"Object with id=3 not found"
}

Multiple Results

If the request returns multiple results (which is typical when issuing a request without an specific value), the total number of results GET ID

 is assigned to the value of . For instance, if you ask for all instances, you might get the following result:returned count runtime

{
 "success": true,
 "data": [
 {
 "id": 1,
 "name": "node"
 "description": "Node.js",
 "fwversion": "0.4.5",
 },
 {
 "id": 2,
 "name": "java"
 "description": "Java 6",
 "fwversion": "1.6",
 },
 {
 "id": 3,
 "name": "ruby18"
 "description": "Ruby 1.8.7",
 "fwversion": "1.8.7",
 },
 {
 "id": 4,
 "name": "ruby19"
 "description": "Ruby 1.9",
 "fwversion": "1.9.2p180",
 }
],
 "count": 4
}

REST Resources

This section contains all of the that are currently available for clients.resources

Team

Example: http://localhost:8080/cloudportal/api/team/1

http://localhost:8080/cloudportal/api/team/1

Body:

{
 "success": true,
 "data": {
 "id": 1,
 "name": "CloudEco Internal Team",
 "description": "A team that contains all of the team members as administrators.",
 "accounts": [1, 3, 8],
 "applications": [1, 6, 12],
 "services": [1, 4]
 }
}

Runtime

Example to get all entries: http://localhost:8080/cloudportal/api/runtime/

Results:

{
 "success": true,
 "data": [
 {
 "id": 1,
 "name": "node"
 "description": "Node.js",
 "fwversion": "0.4.5",
 },
 {
 "id": 2,
 "name": "java"
 "description": "Java 6",
 "fwversion": "1.6",
 },
 {
 "id": 3,
 "name": "ruby18"
 "description": "Ruby 1.8.7",
 "fwversion": "1.8.7",
 },
 {
 "id": 4,
 "name": "ruby19"
 "description": "Ruby 1.9",
 "fwversion": "1.9.2p180",
 }
],
 "count": 4
}

Application

Example to get a specific application with an ID of 1: http://localhost:8080/cloudportal/api/application/1

http://localhost:8080/cloudportal/api/runtime/
http://localhost:8080/cloudportal/api/application/1

{
 "success": true,
 "data": {
 "id": 1,
 "name": "mongrue",
 "description": "A simple, free-form REST interface to a MongoDB database instance.",
 "instances": 1,
 "memory": -1,
 "runtime": 1,
 "url": "mongrue"
 "team": 1,
 }
}

SystemService

A number of available services are available for a given customer, to get a list of all of these, you would issue:

http://localhost:8080/cloudportal/api/system-service

Which would return:

{
 "success": true,
 "data": [
 {
 "id": 1,
 "name": "mongodb",
 "description": "MongoDB NoSQL store",
 "srvversion": "1.8"
 },
 {
 "id": 2,
 "name": "mysql",
 "description": "MySQL database service",
 "srvversion": "5.1"
 },
 {
 "id": 3,
 "name": "postgresql",
 "description": "PostgreSQL database service (vFabric)",
 "srvversion": "9.0"
 },
 {
 "id": 4,
 "name": "rabbitmq",
 "description": "RabbitMQ messaging service",
 "srvversion": "2.4"
 },
 {
 "id": 5,
 "name": "redis",
 "description": "Redis key-value store service",
 "srvversion": "2.2"
 }
],
 "count": 5
}

ProvisionedService

Once a customer has provisioned a service and made it available to her applications, you could get information about a particular one via:

http://localhost:8080/cloudportal/api/system-service

http://localhost:8080/cloudportal/api/service/1

Which would return the following:

{
 "success": true,
 "data": {
 "id": 1,
 "name": "mongodb-800ab",
 "service": 1,
 "team": 1
 }
}

Accounts

To view information about a particular user account, for instance, with an ID of 1, use:

http://localhost:8080/cloudportal/api/account/1

{
 "success": true,
 "data": {
 "id": 1,
 "team": 1,
 "username": "howard"
 "name": "Howard Abrams",
 "description": "Maker of mudpies",
 "accountExpired": false,
 "accountLocked": false,
 "addresses": [1],
 "admin": true,
 "authorities": [1],
 "emails": [1],
 "enabled": true,
 "password": "focker",
 "passwordExpired": false,
 "phones": [1, 2],
 "preferences": null,
 }
}

Technical Details

The resources exposed through the REST API are described in the located in domain classes

. These classes are tagged as being exposed through the RESTce-portal-server/grails-app/domain/com/cloudeco/portal

interface with the following code:

class Xyz {
 static expose = 'xyz'
 // ...

Exposing the domain classes through a REST API is currently being done via .a Grails plugin

Note: Since this plugin is quite , it may not be sufficient for all our needs, and we may end up creating controllers for each class toautomatic

expose the data as REST in a way that we can control it better.

http://localhost:8080/cloudportal/api/service/1
http://localhost:8080/cloudportal/api/account/1
http://wiki.ebento.net/display/IBG/Alpha+CloudPortal+Domain+Model
http://grails.org/plugin/json-rest-api

